金沙威尼斯欢乐娱人城 金沙威尼斯欢乐娱人城
江蘇大學主頁 | English
網站首頁 學院概況 黨建工作 師資隊伍 學科建設 學生培養 科學研究 學生工作 師範認證 制度建設
 
 
師資隊伍
博導風采
碩導風采
教授風采
教師風采
各類人才
招聘計劃
博導風采 當前位置: 首頁 > 師資隊伍 > 博導風采 > 正文
陳元平
發布日期:2019-04-18   浏覽次數:
姓  名 陳元平
職務職稱 教授、博士生導師
研究方向 計算物理、凝聚态物理、人工智能、能源材料
研究生招生專業 物理學、材料物理
聯系電話 0511-88780161
E-mail chenyp@ujs.edu.cn
通信地址 江蘇省鎮江市學府路301号江蘇大學物理與電子工程學院(212013)
 
● 1991/09-1995/07,湖南師範大學物理系,大學/本科.
● 1995/08-2001/08,湖南科技學院,助教、講師
● 2001/09-2007/07,湘潭大學物理與光電工程學院,碩士、博士
● 2001/09-2012/11,湘潭大學物理與光電工程學院,講師、副教授、博士生導師
● 2012/12-2018/08,湘潭大學物理與光電工程學院,教授、博士生導師
● 2018/09-今,江蘇大學理學院學院物理系,教授,博士生導師
● 2012/09-2013/12,美國倫斯勒理工學院,訪問學者
● 2016/11-2017/11,美國加州大學伯克利分校、羅格斯大學,訪問學者

● 2012/09-今,美國物理學會會員
● Phys. Rev. Lett., Adv. Mater., Nano Lett., Nature Commun. 等國際期刊審稿人
● 國家自然科學基金、浙江/湖南/廣東省自然科學基金評審專家

● 計算凝聚态物理、納米物理學、高等量子力學(研究生)
● 量子力學、統計物理、固體物理數理方程(本科生)
● 力學、熱學、電磁學、光學、原子物理、大學物理學(本科生)

● 國家自然科學基金項目:二維薄膜堆垛形成的三維拓撲金屬或半金屬,(11874314)主持
● 國家自然科學基金項目:基于交連石墨烯的碳泡沫的電子結構及量子輸運性質,(11474243)主持
● 國家自然科學基金項目: 石墨烯納米結構中的熱整流及整流效率研究,(51176161)主持
● 國家自然科學基金項目:折疊對石墨烯條帶電子輸運的影響和調控, (11074213)主持
● 國家自然科學基金項目:多終端石墨帶的電子輸運性質,(10847158)主持
● 國家自然科學基金項目:折疊石墨烯的電子結構,(11091240479)主持
● 國家自然科學基金項目:石墨納米結構的電子性質,(30881240314)主持
● 教育部博士點新教師基金: 三終端石墨納米結的電子輸運性質,(200805301001)主持
● 湖南省優秀博士學位論文基金 (YB2009B022) 主持
● 湖南省高校創新平台開放基金項目: 矽納米線的熱電轉化效率研究, (09K034)主持
● 湖南省自然科學基金省市聯合項目:高熱電優值矽納米線的表面調控,(10JJ9001)主持
● 湖南省自然科學基金: 量子線與自旋鍊耦合體系的電子輸運性質,(07JJ3003)主持·湖南省教育廳項目:準一維強關聯體系密度矩陣重整化群方法研究,(05C103) 主持

專著、譯著
● 《納米物理學》,哈爾濱工程大學出版社,2008年,參編
● 《計算凝聚态物理》,湘潭大學出版社,2011年,參編

1. Symmorphic intersecting nodal rings in semiconducting layers, Phys. Rev. Lett.  120, 106403 (2018) 
2. A Class of topological nodal rings and its realization in carbon networks, Phys. Rev. B (Rapid Communication) 97, 121108 (2018)
3. Predicting two-dimensional carbon phosphide compounds: C2P4 by the global optimization method, Comp. Mater.  Sci.  144, 70 (2018)
4. Nexus networks in carbon honeycombs, Phys. Rev. Mater. 2, 42051 (2018)
5. Ferromagnetism and Wigner crystallization in kagome graphene and related structures, Phys. Rev. B 98, 035135(2018)
6. Double Kagome bands in a two-dimensional phosphorus carbide P2C3, J. Phys. Chem. Lett. 9, 2751 (2018)
7. Spindle nodal chain in three-dimensional alpha’ boron,  Phys. Chem. Chem. Phys. 20, 23500 (2018)
8. Nodal-chain network, intersecting nodal rings and triple points coexisting in nonsymmorphic Ba3Si4, Phys. Chem. Chem. Phys. 20, 21177 (2018)
9. Three-dimensional Pentagon Carbon with a genesis of emergent fermions, Nature Comm. 8, 15641 (2017)
10. Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet, J. Phys. Chem. Lett.  8, 1707 (2017) 
11. Tunable Type-I and type-II Dirac fermions in graphene with nitrogen-molecule line defects, J. Phys. Chem. C 12122, 12476 (2017)
12. Semi-Dirac Semimetal in Silicene Oxide, Phys. Chem. Chem. Phys. 19, 3820 (2017)
13. A systematic investigation of thermal conductivities of transition metal dichalcogenides, International Journal of Heat and Mass Transfer 108,417 (2017) 
14. Electron and phonon properties and gas storage in carbon honeycomb, Nanoscale 8, 12863 (2016)
15. Towards three-dimensional Weyl-surface semimetals in graphene networks, Nanoscale 8 (13), 7232 (2016) 
16. Coexistence of flat bands and Dirac bands in a carbon-Kagome-lattice family, Carbon 99, 65 (2016) 
17. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons, Scientific reports, 21639 (2016) 
18. Phonon transport in single-layer boron nanoribbons, Nanotechnology  27, 445703 (2016)
19. Transition of thermal rectification in silicon nanocones, Applied Thermal Engineering 102, 1075 (2016)
20. New record of high ZT found in hybrid transition-metal-dichalcogenides, J Appl.  Phys.  120, 235109 (2016)
21. Fluorine-Doped and partially oxidized tantalum carbides as nonprecious metal electrocatalysts for methanol oxidation reaction in acidic media,  Adv. Mater.  28, 2163 (2016)
22.Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots, J Phys. D: Appl. Phys.  49, 135303 (2016)
23. Nanostructured Carbon Allotropes with Weyl-like Loops and Points, Nano Lett. 15 (10), 6974 (2015) 
24. Thermal transport in MoS2/Graphene hybrid nanosheets, Nanotechnology 26, 375402 (2015)
25. Geometry, Stability and thermal transport of hydrogenated graphene nanoquilts, Solid State Comm.  213, 31 (2015)
26. A low-surface energy carbon allotrope: the case for bcc-C6,  Phys. Chem. Chem. Phys. 17, 14083 (2015)
27. Versatile electronic properties and exotic edge states of single-layer tetragonal silicon carbides, Phys. Chem. Chem. Phys. 17, 11211 (2015)
28. Monolayer II-VI semiconductors: a first-principles prediction, Phys. Rev. B 92, 115307 (2015)
29. Enhancement of thermoelectric properties of gamma-graphyne nanoribbons with edge modulation, Eur. Phys. J. B  8, 60153 (2015) 
30. Carbon Kagome Lattice and Orbital-Frustration-Induced Metal-Insulator Transition for Optoelectronics, Phys. Rev. Lett. 113, 085501 (2014) 
31. Resonant transport and negative differential resistance in the graphene and graphyne quantum dots, Physica B 445, 88 (2014)
32. Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6, 1113 (2014)
33. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions, J. Appl. Phys. 114 (7), 073710 (2013)
34. Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain, Chin. Phys. B 22 (8), 087303 (2013)
35. Atomic structure and electronic properties of folded graphene nanoribbons: A first-principles study, J. Appl. Phys. 113 (17), 173506 (2013)
36. Spin-polarized transport in zigzag graphene nanoribbons adsorbing nonmagnetic atomic chain, Euro. Phys. J. B 86 (2), 34  (2013)
37. Thermal transport of graphene nanoribbons embedding linear defects, Acta Phys. Sinica 62(6): 068102 (2013)
38. Studies on electrical properties of graphene nanoribbons with pore defects, Acta Phys. Sinica 62(5): 057101 (2013)
39. R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons, J. Mater. Chem. A 1 (17), 5341-5346 (2013)
40. The modification of central B/N atom chain on electron transport of graphene nanoribbons, J. Appl. Phys. 112 (11), 113713 (2012)
41. Electron transport in folded graphene junctions, Phys. Rev. B 86 (19), 195426 (2012)
42. Continuously Tunable Thermal Conductance in Arched Graphene Nanoribbons, Appl. Phys. Express 5 (12), 125103 (2012)
43. Spin-polarized transport in graphene nanoribbon superlattices, Chin. Phys. B 21 (10), 107202 (2012)
44. Electronic properties of disordered bilayer hexagonal boron nitride quantum films, Acta Phys. Sinica 61 (17) (2012)
45. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev. B 86 (4), 045425 (2012)
46. Thermal transport in graphyne nanoribbons, Phys. Rev. B 85 (23), 235436 (2012)
47. Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons, Phys. Lett. A 376 (4), 559-562  (2012)
48. Wurtzite-type CuInSe 2 for high-performance solar cell absorber: ab initio exploration of the new phase structure, J. Mater. Chem. 22 (40), 21662-21666 (2012)
49. Thermal conductance modulator based on folded graphene nanoribbons, Appl. Phys. Lett. 99 (23), 233101 (2011)
50. The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons, Acta Phys. Sinica 60 (12) (2011)
51. Spin transistor based on T-shaped graphene junctions, J. Appl. Phys. 110 (3), 033701 (2011)
52. Energy gaps in nitrogen delta-doping graphene: a first-principles study, Appl. Phys. Lett. 99 (1), 012107 (2011)
53. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons, J. Phys. D: Appl. Phys. 44 (21), 215403 (2011)
54. Effect of triangle vacancy on thermal transport in boron nitride nanoribbons, Solid State Commun. 151 (6), 460 (2011)
55. Thermal transport in L-shaped graphene nano-junctions, Acta Phys. Sinica 60(2): 028103  (2011)
56. Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions, Phys. Rev. B 82 (24), 245403 (2010)
57. Electron transport in graphene nanoribbons under a central potential modulation, Euro. Phys. J. B 78 (3), 381 (2010)
58. Electronic properties of disordered bilayer graphene, Solid State Commun. 150 (47-48), 2366 (2010)
59. Resonant splitting of phonon transport in periodic T-shaped graphene nanoribbons, EPL (Europhysics Letters) 91 (4), 46006 (2010)
60. Strain effect on transport properties of hexagonal boron–nitride nanoribbons, Chin. Phys. B 19 (8), 086105  (2010)
61. Electronic transport properties of metallic graphene nanoribbons with two vacancies, Solid State Commun. 150, 1308 (2010)
62. Thermal transport in hexagonal boron nitride nanoribbons, Nanotechnology 21 (24), 245701 (2010)
63. Resonant transmission in three-terminal triangle graphene nanojunctions with zigzag edges, Solid State Commun. 150 (13-14), 675-679 (2010)
64. Electron transport of folded graphene nanoribbons, J. Appl. Phys. 106 (10), 103714 (2009)
65. Electronic structure and bonding mechanism of La-Ir-Si: A first-principles study, Acta Phys. Sinica 58 (11), 7826-7832 (2009)
66. Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge, EPL (Europhysics Letters) 88 (2), 28002 (2009)
67. The effect of corner form on electron transport of L-shaped graphene nanoribbons, Physica B: Condensed Matter 404 (12-13), 1771-1775 (2009)
68. Resonant transport and quantum bound states in Z-shaped graphene nanoribbons, Phys. Lett. A 372 (37), 5928-5931 (2008)
69. Asymmetric transport in asymmetric T-shaped graphene nanoribbons, Appl. Phys. Lett. 93 (9), 092104 (2008)
70. Electron transport of L-shaped graphene nanoribbons, J. Appl. Phys. 103 (6), 063711 (2008)
71. Magnetotransport in a dual waveguide coupled by a finite barrier: Energy filter and directional coupler, Chin. Phys. 16 (10), 3087 (2007)
72. Resonant transmission via magnetically bound states in periodic quantum structures, Phys. Rev. B 76 (11), 115439 (2007)
73. Nonideal effects in quantum field-effect directional coupler, Chin. Phys. 15 (10), 2415 (2006)
74. (n− 2)-fold resonant splitting in open periodic quantum structures, Phys. Rev. B 74 (3), 035310 (2006)
75. The evolution of bound states in quantum wires under potential modulation, Physica B: Condensed Matter 373 (2), 253-257 (2006)
76. Transmission resonance via quantum bound states in confined arrays of antidots, Euro. Phys. J. B 49,333 (2006)
77. Transport through T-shaped quantum wires under potential modulation: Lattice Green’s function approach, Phys. Rev. B 71 (24), 245335 (2005) Electron transport across a quantum wire embedding a saw-tooth superlattice, Chin. Phys. 13 (9), 1537 (2004)

● 2017年被評為湘潭大學“韶峰學者”
● 2012年獲湖南省自然科學獎一等獎
● 2009年獲湖南省優秀博士學位論文
● 2010年被評為湖南省普通高校青年骨幹教師
● 2007年獲湖南省科學技術進步三等獎
● 2010年獲湖南省自然科學優秀論文一等獎
 
Copyright © 2020 [专家解读]金沙威尼斯欢乐娱人城(两会授权发布). All Rights Reserved·版权所有
地址:江蘇省鎮江市學府路301号70信箱 郵編:212013 電話:0511-88788056
Baidu
sogou